Skip to main content
Log in

Towards Teaching Chemistry as a Language

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

This paper presents views on the teaching of chemistry and directions for its further development. A detailed critical analysis is offered for the inadequacy of much of the current teaching, weighed that it is by a conventional, traditional and, as it turns out, rather outdated sense of the material to be covered. The ambient meta-discourse on the nature of chemistry is unduly dominated by the physicalist assumption, believing chemistry to be reducible to physics, which I hold to be unrefutable and thus parascientific. This all-too-tenuous link is countered with a parallel, bolstered by a slew of examples and analogies, between chemistry and linguistics: it is both more legitimate, in terms of the supporting evidence, considerably more effective than a physicalist approach. Chemical teaching needs to hybridize the bottom-up and the top-down communication vectors between the students and their teacher. It can only benefit from infusion of a strong dose of history. Chemistry ought to be taught in like manner to a language, on the dual evidence of the existence of an iconic chemical language, of formulas and equations; and of chemical science being language-like and a combinatorial art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamcíková, L. U., & Sevcík, P. (1998). The blue bottle experiment—Simple demonstration of self-organization. Journal of Chemical Education, 75(12), 1580.

    Article  Google Scholar 

  • Anonymous. (1993, February 1). GR8PL8. Daily News, pp. 3.

  • Atkins, P. (1978). Physical chemistry. Oxford: Oxford University Press.

    Google Scholar 

  • Atkins, P. (2010). Physical chemistry (9th ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Bader, R. F. W. (1985). Atoms in molecules. Accounts of Chemical Research, 18, 9–15.

    Article  Google Scholar 

  • Bader, R. F. W. (1990). Atoms in molecules—A quantum theory. Oxford: Oxford University Press.

    Google Scholar 

  • Bailer-Jones, D. M. (2002). Scientists’ thoughts on scientific models. Perspectives on Science, 10(3-Fall), 275–301.

    Google Scholar 

  • Balaban, A. T. (1976). Chemical applications of graph theory. London: Academic Press.

    Google Scholar 

  • Bartell, L. S. (2011). A personal reminiscence about theories used and misused in structural chemistry. Structural Chemistry, 22(2), 247–251.

    Google Scholar 

  • Beer, J. J. (1959). The emergence of the German dye industry. Urbana, IL: University of Illinois Press.

    Google Scholar 

  • Bensaude-Vincent, B. (2006). Textbooks on the map of science studies. Science & Education, 15(7–8), 667–670.

    Article  Google Scholar 

  • Benson, S. W. (1976). Thermochemical kinetics. New York: Wiley.

  • Bird, A., & Tobin, E. (2009). Natural kinds. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy. Palo Alto, CA: Stanford University Press.

  • Bishop, R. C. (2005). Patching physics and chemistry together. In M. Solomon (Ed.), Philosophy of Science, 72(5-December/Proceedings of the 2004 biennial meeting of the philosophy of science association. Part I: Contributed papers (pp. 710–722).

  • Bloor, D. (2005). Toward a sociology of epistemic things. Perspectives on Science, 13(3 (Fall)), 285–312.

    Google Scholar 

  • Brown, T. L. (2003). The metaphorical foundations of chemical explanation. In Annals of the New York academy of sciences, 988 (Chemical Explanation: Characteristics, Development, Autonomy), pp. 209–216.

  • Brown, T. L., Lemay, H. E., Bursten, B. E., & Lemay, H. (2008). Chemistry: The central science (11th ed.). Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Burdett, J. K. (1980). Molecular shapes: Theoretical models of inorganic stereochemistry. New York: Wiley-Interscience.

  • Campbell, J. A. (1963). Kinetics—Early and often. Journal of Chemical Education, 40(11), 578.

    Google Scholar 

  • Carroll, J. B. (Ed.). (1956). Language, thought and reality. Selected writings of Benjamin Lee Whorf (pp. 8–10). New York: MIT and Wiley.

    Google Scholar 

  • Cayley, A. (1874). On the mathematical theory of isomers. Philosophical Magazine, 47, 444–446.

    Google Scholar 

  • Chamizo, J. A. (2007). Teaching modern chemistry through ‘recurrent historical teaching models’. Science & Education, 16(2), 197–216.

    Article  Google Scholar 

  • Chamot, A. U., & El-Dinary, P. B. (1999). Children’s learning strategies in language immersion classrooms. The Modern Language Journal, 63(3), 319–338.

    Google Scholar 

  • Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.

    Google Scholar 

  • Comrie, B. (1989). Language universals and linguistic typology: Syntax and morphology (2nd ed.). Chicago: The University of Chicago Press.

    Google Scholar 

  • Cook, A. G., Tolliver, R. M., & Williams, J. E. (1994). The blue bottle experiment revisited: How blue? How sweet? Journal of Chemical Education, 71(2), 160.

    Google Scholar 

  • Curtain, H. A., & Dahlberg, C. A. (2003). Languages and children—Making the match (3rd ed.). Boston, MA: Allyn and Bacon.

    Google Scholar 

  • de Berg, K. C. (2010). Tin oxide chemistry from the last decade of the nineteenth century to the first decade of the twenty-first century: Towards the development of a big-picture approach to the teaching and learning of chemistry while focussing on a specific compound or class of compounds. Science & Education, 19(9), 847–866.

    Article  Google Scholar 

  • de Saint-Romain, G. B. (1679). La science naturelle, dégagée des chicanes de l’école. Paris: Antoine Cellier.

    Google Scholar 

  • Dienstag, J. L. (2008). Relevance and rigor in premedical education. New England Journal of Medicine, 359, 221–224.

    Article  Google Scholar 

  • Dirac, P. A. M. (1929). Quantum mechanics of many-electron systems. Proceedings of the Royal Society of London, A, 123, 714.

    Article  Google Scholar 

  • Djerassi, C., & Laszlo, P. (2003). NO. Weinheim: Deutcher Theaterverlag.

    Google Scholar 

  • Dykstra, A. H. (1974). Sexy laughing stories of old Japan (pp. 66–67). Tokyo: Japan Publications, Inc.

    Google Scholar 

  • Dyson, F. (1996). The scientist as rebel. The American Mathematical Monthly, 103(9), 800–805.

    Article  Google Scholar 

  • Earley, J. E. (2003). Varieties of properties. An alternative distinction among qualities. Annals of the New York academy of sciences, 998 (Chemical Explanation: Characteristics, Development, Autonomy.), pp. 80–89.

  • Earley, J. E. (2005). Why there is no salt in the sea. Foundations of Chemistry, 7, 85–102.

    Article  Google Scholar 

  • Egan, K. (2011). Learning in depth. A simple innovation that can transform schooling. Chicago: The University of Chicago Press.

    Book  Google Scholar 

  • Eisenberg, D., & Kauzmann, W. (2005 (1969)). The structure and properties of water. Oxford: Oxford University Press.

  • Eisner, T., & Meinwald, J. (2003). Alkaloid-derived pheromones and sexual selection in Lepidoptera. In G. J. Blomquist & R. C. Vogt (Eds.), Pheromone biochemistry and molecular biology (pp. 341–368). London: Elsevier Academic Press.

  • Emsley, J. (1994). The consumer’s good chemical guide: Separating facts from fiction about everyday products. London: Corgi Books.

    Google Scholar 

  • Engerer, S. C., & Cook, A. G. (1999). The blue bottle reaction as a general chemistry experiment on reaction mechanisms. Journal of Chemical Education, 76(11), 1519.

    Article  Google Scholar 

  • Erduran, S. (2005). Applying the philosophical concept of reduction to the chemistry of water: Implications for chemical education. Science & Education, 14(2), 161–171.

    Article  Google Scholar 

  • Erduran, S., Bravo, A. A., & Naaman, R. M. (2007). Developing epistemologically empowered teachers: examining the role of philosophy of chemistry in teacher education. Science & Education, 16(9–10), 975–989.

    Article  Google Scholar 

  • Fabre d’Olivet, A. (1815–1816). La Langue hébraïque restituée et le véritable sens des mots hébreux rétabli et prouvé par leur analyse radicale. Paris: Barrois l’aîné Eberhart.

  • Fauque, D. M. E. (2009). Introducing the history of science at the french middle school. Science & Education, 18(9), 1277–1283.

    Article  Google Scholar 

  • Fisher, G. (2003). Explaining explanation in chemistry. In Annals of the New York academy of sciences, 998 (Chemical Explanation: Characteristics, Development, Autonomy.), pp. 16–21.

  • Fowler, F. C., & Poetter, T. S. (2004). Framing French Success in Elementary Mathematics. Policy, Curriculum, and Pedagogy Curriculum Inquiry, 34(3), 283–314.

    Article  Google Scholar 

  • Gadamer, H. G. (1989). Truth and method (2nd ed.). New York: Crossroad.

    Google Scholar 

  • Galilei, G. (1957). The Assayer. In S. Drake (Ed.), Discoveries and opinions of galileo (pp. 237–238). Garden City, NY: Doubleday.

    Google Scholar 

  • Garfield, S. (2001). Mauve: How one man invented a color that changed the world. New York: W. W. Norton.

    Google Scholar 

  • Gillespie, R. J. (1972). Molecular geometry. London: Van Nostrand.

    Google Scholar 

  • Gillespie, R. J., & Robinson, E. A. (2007). Gilbert N. Lewis and the chemical bond: The electron pair and the octet rule from 1916 to the present day. Journal of Computational Chemistry, 28(1), 87–97.

    Article  Google Scholar 

  • Ginzburg, C. (2002). Wooden eyes. Nine reflections on distance. London, NY: Verso.

    Google Scholar 

  • Goodwin, W. (2003). Explanation in organic chemistry. In Annals of the New York academy of sciences, 988 (Chemical explanation: Characteristics, development, autonomy), pp. 141–153.

  • Goodwin, W. (2008). Implementation and Innovation in total synthesis. Foundations of Chemistry, 10(3), 177–186.

  • Goodwin, W. (2009a). Scientific understanding and synthetic design. The British Journal for the Philosophy of Science, 60(2), 271–301.

    Article  Google Scholar 

  • Goodwin, W. (2009b). Visual representations in science. Philosophy of Science, 76(3), 372–390.

    Google Scholar 

  • Goodwin, W. (2010). How do structural formulas embody the theory of organic chemistry? Philosophy of Physical Science, 61(3), 621–633.

    Google Scholar 

  • Goudsmit, S., & Uhlenbeck, G. E. (1926). Spinning electrons and the structure of spectra. Nature 117(February 20), 264–265.

    Google Scholar 

  • Greenbaum, S. (1992). In T. M. Arthur (Ed.), The Oxford Companion to the English Language (p. 1051). Oxford: Oxford University Press.

  • Hacking, I. (1979). Review: Imre lakatos’s philosophy of science reviewed work(s): The methodology of scientific research programmes: Philosophical papers by Imre Lakatos mathematics, science and epistemology: Philosophical papers by John Worrall; Gregory Currie. The British Journal for the Philosophy of Science, 30(4-December), 381–402.

  • Halleux, R. (Ed.). (1975). L’Etrenne ou la neige sexangulaire (1611). Paris: Vrin.

    Google Scholar 

  • Hammond, G. S. (1955). A correlation of reaction rates. Journal of the American Chemical Society, 77, 334–338.

    Article  Google Scholar 

  • Harré, R., & Llored, J.-P. (2009). Mereologies as the grammars of chemical discourses. Philadelphia.

  • Heitler, W., & London, F. (1927). Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik, 44, 455–472.

    Google Scholar 

  • Hempel, C. G. (1965). Aspects of scientific explanation and other essays in the philosophy of science. New York: Free Press.

    Google Scholar 

  • Hendry, R. F. (2004). The physicists, the chemists and the pragmatics of explanation. In S. D. Mitchell (Ed.), Philosophy of Science, 71(5-December proceedings of the 2002 Biennial meeting of the philosophy of science association. Part II: Symposia (pp. 1048–1059).

  • Hoffmann, R. (1990). Molecular beauty. The Journal of Aesthetics and Art Criticism, 48(3, Summer), 191–204.

    Google Scholar 

  • Hoffmann, R. (1996). Just a little bit unnatural. Art Journal, 5(1), Spring, 62–63.

    Google Scholar 

  • Hoffmann, R., & Laszlo, P. (1991). Representation in chemistry. Angewandte Chemie International edition in English, 30, 1–16.

    Google Scholar 

  • Holmes, F. L. (1989). The complementarity of teaching and research in Liebig’s laboratory. Osiris, 2nd Series, 5(Science in Germany: The Intersection of Institutional and Intellectual Issues), pp. 121–164.

  • Hughes, M. E., & O’Rand, A. M. (2005). The lives and times of baby boomers. In R. Farley & J. Haaga (Eds.), The American people: Census 2000 (pp. 224–258). New York: Russell Sage Foundation Publications.

    Google Scholar 

  • Jacob, C. (2001). Analysis and synthesis. Interdependent operations in chemical language and practice. Hyle, 7(1), 31–50.

    Google Scholar 

  • Jha, S. R. (2006). The bid to transcend popper, and the lakatos-polanyi connection. Perspectives on Science, 14(3-Fall), 318–346.

    Google Scholar 

  • Johnson, A. (2009). Modeling molecules: Computational nanotechnology as a knowledge community. Perspectives on Science, 17(2 (Summer)), 144–173.

    Google Scholar 

  • Jurafsky, D., & Martin, J. H. (2009). Speech and language processing: An introduction to natural language processing. In Computational linguistics and speech recognition (2nd ed.). Englewood Cliffs, NJ: Prentice-Hall.

  • King, R. B. (2003). Chirality and handedness. The ruch ‘Shoe-Potato’ dichotomy in the right-left classification problem. In Annals of the New York academy of sciences, 988 (Chemical explanation: Characteristics, development, autonomy), pp. 158–170.

  • Kiss, O. (2006). Heuristic, methodology or logic of discovery? Lakatos on patterns of thinking. Perspectives on Science, 14(3), 302–317.

    Article  Google Scholar 

  • Kozma, R., Chin, E., Russell, J., & Marx, N. (2000). The roles of representations and tools in the chemistry laboratory and their implications for chemistry learning. The Journal of the Learning Sciences, 9(2), 105–143.

    Article  Google Scholar 

  • Kulik, J. A., Carmichael, K., & Kulik, C.-L. (1974). The Keller plan in science teaching. An individually paced, student-tutored, and mastery-oriented instructional method is evaluated. Science, 183(4123), 379–383.

    Article  Google Scholar 

  • Lakatos, I. (1970). History of science and its rational reconstructions. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, VIII, 91–136.

  • Laszlo, P. (1999). Circulation of concepts. Foundations of Chemistry, 1, 225–238.

    Article  Google Scholar 

  • Laszlo, P. (2000). Playing with molecular models. Hyle, 6(1), 85–97.

    Google Scholar 

  • László, E. (1996). The systems view of the world: A Holistic vision for our time. Cresskill, NJ: Hampton Press.

    Google Scholar 

  • Laszlo, P., & Schrobilgen, G. J. (1988). One or several pioneers? The discovery of noble gas compounds. Angewandte Chemie (International ed. in English), 27, 479–489.

    Article  Google Scholar 

  • Leo, W.-M. (1973). Chemistry teaching by the Keller plan. Journal of Chemical Education, 50(1), 49.

    Article  Google Scholar 

  • Levison, M., & Lessard, G. (1995). New words from old: A formalism for word-formation new words from old: A formalism for word-formation. Computers and the Humanities, 29(6), 463–479.

    Article  Google Scholar 

  • Levy, D. E. (2008). Arrow pushing in organic chemistry: An easy approach to understanding reaction mechanisms. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Lewis, G. N. (1916). The atom and the molecule. Journal of the American Chemical Society, 38, 762–785.

    Article  Google Scholar 

  • Llored, J.-P. (2010). Mereology and quantum chemistry: The approximation of molecular orbital. Foundations of Chemistry, 12(3), 203–221.

    Article  Google Scholar 

  • Lucas, H. J. (1935). Organic chemistry. New York: American Book Company.

    Google Scholar 

  • Matthews, P. H. (1972). Inflectional morphology: A theoretical study based on aspects of Latin verb conjugation. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Matthews, M. R. (1993). Constructivism and science education: Some epistemological problems. Journal of Science Education and Technology, 2(1), 359–370.

    Google Scholar 

  • Matthews, M. R. (2009). Teaching the philosophical and worldview components of science. Science & Education, 18(6–7), 697–728.

    Article  Google Scholar 

  • McArthur, T. (1992). Phrasal Verb. In T. McArthur (Ed.), The Oxford companion to the English language (pp. 772–776). Oxford, NY: Oxford University Press.

    Google Scholar 

  • McCalla, K. I. (1983). On distinctive features and phoneme tables, with special reference to the English consonants. La Linguistique, 19(1), 55–70.

    Google Scholar 

  • McIntyre, L. C. (2001). Accommodation, prediction, and confirmation. Perspectives on Science, 9(3 (Fall)), 308–323.

  • Meth-Cohn, D., & Smith, M. (1994). What did W. H. Perkin actually make when he oxidized anilin to obtain mauveine? Journal of chemical education Perkin Transactions, 1, 5–7.

    Google Scholar 

  • Middlecamp, C., Keller, S. W., Anderson, K., Bentley, A., Cann, M., & Ellis, J. (2010). Chemistry in context: Applying chemistry to society (7th ed.). Washington, DC: American Chemical Society.

    Google Scholar 

  • Morrison, R. T., & Boyd, R. N. (1958). Organic chemistry (1st ed.). Boston, MA: Allyn & Bacon.

  • Morrison, R. T., & Boyd, R. N. (1966). Organic chemistry (2nd ed.). Boston: Allyn & Bacon.

  • Morrison, R. T., & Boyd, R. N. (1973). Organic chemistry (3rd ed.). Boston, MA: Allyn & Bacon.

  • Morrison, R. T., & Boyd, R. N. (1983). Organic chemistry (4th ed.). Boston: Allyn & Bacon.

  • Morrison, R. T., & Boyd, R. N. (1987). Organic chemistry (5th ed.). Boston: Allyn & Bacon.

  • Morrison, R. T., & Boyd, R. N. (1992). Organic chemistry (6th ed.). Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Moylan, C. R., & Brauman, J. I. (1983). Gas phase acid-base chemistry. Annual Review of Physical Chemistry, 34, 187–215.

    Article  Google Scholar 

  • Mulliken, R. S. (1928a). The assignment of quantum numbers for electrons in molecules. I. Physical Review, 32(2), 186.

    Article  Google Scholar 

  • Mulliken, R. S. (1928b). Electronic states and band spectrum structure in diatomic molecules. VII. P2→S2 and S2→P2 transitions. Physical Review, 32(3), 388.

    Google Scholar 

  • Newman, M. (2008). Chemical supervenience. Foundations of Chemistry, 10(1), 49–62.

    Article  Google Scholar 

  • Nickles, T. (1987). Lakatosian heuristics and epistemic support. The British Journal for the Philosophy of Science, 38(2-June), 181–205.

    Google Scholar 

  • Nola, R. (1997). Constructivism in science and science education: A philosophical critique. Science & Education, 6(1–2), 55–83.

    Article  Google Scholar 

  • Ostrovsky, V. N. (2003). Physical explanation of the periodic table. In: Annals of the New York academy of sciences (Chemical explanation: Characteristics, development, autonomy.), pp. 182–192.

  • Pauling, L. C. (1931a). The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. Journal of the American Chemical Society, 53, 1367–1400.

    Article  Google Scholar 

  • Pauling, L. C. (1931b). The nature of the chemical bond. II. The one-electron bond and the three-electron bond. Journal of the American Chemical Society, 53, 3225–3237.

    Article  Google Scholar 

  • Pauling, L. C. (1932). The nature of the chemical bond. III. The transition from one extreme bond type to another. Journal of the American Chemical Society, 54(March), 988–1003.

    Google Scholar 

  • Pauling, L. (1941). General chemistry. Pasadena: California Institute of Technology.

    Google Scholar 

  • Pauling, L. (1953). General chemistry: An introduction to descriptive chemistry and modern chemical theory (2nd ed.). San Francisco: W. H. Freeman.

    Google Scholar 

  • Pauling, L. (1970). General chemistry (3rd ed.). San Francisco: W. H. Freeman.

    Google Scholar 

  • Polya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Popper, S. K. (1963). Conjectures and refutations. London: Routledge and Kegan Paul.

    Google Scholar 

  • Putnam, H. (1987). The many faces of realism: The paul carus lectures. La Salle: Open Court.

    Google Scholar 

  • Quílez, J. (2009). From chemical forces to chemical rates: A historical/philosophical foundation for the teaching of chemical equilibrium. Science & Education, 18(9), 1203–1251.

    Article  Google Scholar 

  • Rheinberger, H.-J. (1997). Toward a history of epistemic things. Synthesizing proteins in the test tube. Stanford: Stanford University Press.

    Google Scholar 

  • Ringen, C. O. (1988). Transparency in Hungarian vowel harmony. Phonology, 5(2), 327–342. Underspecification in Phonology.

    Google Scholar 

  • Ritter, R. M. (2005). New hart’s rules: The handbook of style for writers and editors. Oxford: Oxford University Press.

    Google Scholar 

  • Rocke, A. J. (2010). Image and reality: Kekule, kopp, and the scientific imagination. Chicago: The University of Chicago Press.

  • Scerri, E. (2003). Constructivism, relativism, and chemical education. In: Annals of the New York academy of sciences, 988 (Chemical explanation: Characteristics, development, autonomy), pp. 359–369.

  • Scerri, E. R. (2007). The periodic table: Its story and its significance. New York: Oxford University Press.

    Google Scholar 

  • Schmidt, W. H., & Prawat, R. S. (1999). What does the third international mathematics and science study tell us about where to draw the line in the top-down versus bottom-up debate? Educational Evaluation and Policy Analysis, 21(1), 85–91.

    Google Scholar 

  • Schummer, J. (2003). Aesthetics of chemical productsmaterials, molecules, and molecular models. Hyle, 9(1), 77–108.

    Google Scholar 

  • Schwartz, A. T. (1999). Creating a context for chemistry. Science & Education, 8(6), 605–618.

    Article  Google Scholar 

  • Selkirk, E. O. (1982). The syllable. In H. V. D. Hulst & N. Smith (Eds.), The structure of phonological representations II (pp. 337–383). Dordrecht: Foris Publications.

    Google Scholar 

  • Smith, K. J., & Metz, P. A. (1996). Evaluating student understanding of solution chemistry through microscopic representations. Journal of Chemical Education, 73(3), 233.

    Article  Google Scholar 

  • Snyder, L. J. (1997). Discoverer’s induction. Philosophy of Science, 64(4) (Dec., 1997), pp. 580–604, 64(4-December), 580–604.

  • Sorensen, R. (2006). Vagueness. In E. N. Zalta (Ed.), Stanford Encyclopedia of Philosophy. Stanford, CA: Stanford University.

    Google Scholar 

  • Stemwedel, J. D. (2003). ‘Causes’ in chemical explanations. In Annals of the New York academy of sciences, 998 (Chemical explanation: Characteristics, development, autonomy.), pp. 217–226.

  • Sylvester, J. J. (1878). Chemistry and algebra. Nature, 17, 284–309.

    Article  Google Scholar 

  • Talanquer, V. (2008). Students’ predictions about the sensory properties of chemical compounds: Additive Versus emergent frameworks. Science & Education, 92, 96–114.

    Article  Google Scholar 

  • This, H. (2007). Kitchen mysteries: Revealing the science of cooking. New York: Columbia University Press.

    Google Scholar 

  • Tranel, B. (1991). CVC light syllables, geminates and moraic theory. Phonology, 8(2), 291–302.

    Article  Google Scholar 

  • Travis, A. S. (1993). The rainbow makers: The origins of the synthetic dyestuffs industry in Western Europe. Cranbury, NJ: Lehigh University Press.

    Google Scholar 

  • Vago, R. M. (1973). Abstract vowel harmony systems in Uralic and Altaic languages abstract vowel harmony systems in Uralic and Altaic languages. Language, 49(3), 579–605.

    Article  Google Scholar 

  • Vamvakeros, X., Pavlatou, E. A., & Spyrellis, N. (2010). Survey exploring views of scientists on current trends in chemistry education. Science & Education, 19(2), 119–145.

    Article  Google Scholar 

  • van Brakel, J. (2003). The ignis fatuus of reduction and unification. Back to the rough ground. Annals of the New York Academy of Sciences, 998 (Chemical Explanation: Characteristics, Development, Autonomy), pp. 30–43.

  • Ware, C., & Mitchell, P. (2008). Visualizing graphs in three dimensions. ACM Transactions on Applied Perception, 5(1), 1–15.

    Article  Google Scholar 

  • Weiner, S. (1942). Chemical semantics. Journal of Chemical Education, 19(8), 372.

    Article  Google Scholar 

  • Wittgenstein, L. (1953). Philosophical Investigations. (G. E. M. Anscombe, Trans.). New York: The Macmillan Company.

  • Woodward, R. B., & Hoffmann, R. (1970). The conservation of orbital symmetry. Weinheim: Verlag Chemie.

  • Woody, A. I. (2004). More telltale signs: What attention to representation reveals about scientific explanation. Philosophy of Science, 71(5-December), 780–793.

    Google Scholar 

  • Yamalidou, M. (2001). Molecular representations: Building tentative links between the history of science and the study of cognition. Science & Education, 10(5), 423–451.

    Article  Google Scholar 

  • Zwicky, A. M. (1971). Linguistics as chemistry: The substance theory of semantic primes. Columbus, OH: Computer and Information Science Research Center.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Laszlo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laszlo, P. Towards Teaching Chemistry as a Language. Sci & Educ 22, 1669–1706 (2013). https://doi.org/10.1007/s11191-011-9408-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-011-9408-6

Keywords

Navigation